Advanced photonic crystal nanocavity quantum dot lasers

Yasutomo Ota, Katsuyuki Watanabe, Masahiro Kakuda, Satoshi Iwamoto, Yasuhiko Arakawa

研究成果: Article査読

抄録

We discuss our recent progress in photonic crystal nanocavity quantum dot lasers. We show how enhanced light matter interactions in the nanocavity lead to diverse and fascinating lasing phenomena that are in general inaccessible by conventional bulky semiconductor lasers. First, we demonstrate thresholdless lasing, in which any clear kink in the output laser curve does not appear. This is a result of near unity coupling of spontaneous emission into the lasing cavity mode, enabled by the strong Purcell effect supported in the nanocavity. Then, we discuss self-frequency conversion nanolasers, in which both near infrared lasing oscillation and nonlinear optical frequency conversion to visible light are simultaneously supported in the individual nanocavity. Owing to the tight optical confinement both in time and space, a high normalized conversion efficiency over a few hundred %/W is demonstrated. We also show that the intracavity nonlinear frequency conversion can be utilized to measure the statistics of the intracavity photons. These novel phenomena will be useful for developing various nano-optoelectronic devices with advanced functionalities.

本文言語English
ページ(範囲)553-560
ページ数8
ジャーナルIEICE Transactions on Electronics
E101C
7
DOI
出版ステータスPublished - 2018 7
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「Advanced photonic crystal nanocavity quantum dot lasers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル