TY - JOUR
T1 - Algebraic independence of certain power series of algebraic numbers
AU - Nishioka, Kumiko
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1986/7
Y1 - 1986/7
N2 - Let f(z) = Σk = 0∞ zk!. Then in p-adic field we prove that for any algebraic numbers α1,..., αn with 0 < |αi| < 1 (1 ≤ i ≤ n), f(α1),..., f(αn) are algebraically independent over Q if and only if αi αj is not a root of unity for i ≠ j. In the complex field we prove the above result only when n = 2, making use of the p-adic field.
AB - Let f(z) = Σk = 0∞ zk!. Then in p-adic field we prove that for any algebraic numbers α1,..., αn with 0 < |αi| < 1 (1 ≤ i ≤ n), f(α1),..., f(αn) are algebraically independent over Q if and only if αi αj is not a root of unity for i ≠ j. In the complex field we prove the above result only when n = 2, making use of the p-adic field.
UR - http://www.scopus.com/inward/record.url?scp=0011320759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0011320759&partnerID=8YFLogxK
U2 - 10.1016/0022-314X(86)90080-6
DO - 10.1016/0022-314X(86)90080-6
M3 - Article
AN - SCOPUS:0011320759
SN - 0022-314X
VL - 23
SP - 354
EP - 364
JO - Journal of Number Theory
JF - Journal of Number Theory
IS - 3
ER -