Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

C. Elsner, S. H. Shimomura, I. Shiokawa

研究成果: Article

抜粋

In This paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbersΣn=1F-2s2n and second, for sums of evenly even and unevenly even typesΣn=1F-2s4nΣn=1F-2s4n-2.The numbersΣn=1F-24n-2.

元の言語English
ページ(範囲)173-200
ページ数28
ジャーナルFundamental and Applied Mathematics
16
発行部数5
出版物ステータスPublished - 2010 12 1

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology
  • Applied Mathematics

フィンガープリント Algebraic relations for reciprocal sums of even terms in Fibonacci numbers' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Elsner, C., Shimomura, S. H., & Shiokawa, I. (2010). Algebraic relations for reciprocal sums of even terms in Fibonacci numbers. Fundamental and Applied Mathematics, 16(5), 173-200.