Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

Carsten Elsner, Shun Shimomura, Iekata Shiokawa

研究成果: Article

4 引用 (Scopus)

抜粋

In this paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbers, and second, for sums of evenly even and unevenly even types. The numbers, and are shown to be algebraically independent, and each sum is written as an explicit rational function of these three numbers over ℚ. Similar results are obtained for various series of even type, including the reciprocal sums of Lucas numbers, and.

元の言語English
ページ(範囲)650-671
ページ数22
ジャーナルJournal of Mathematical Sciences
180
発行部数5
DOI
出版物ステータスPublished - 2012 2 1

ASJC Scopus subject areas

  • Statistics and Probability
  • Mathematics(all)
  • Applied Mathematics

フィンガープリント Algebraic relations for reciprocal sums of even terms in Fibonacci numbers' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用