Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

C. Elsner, S. H. Shimomura, I. Shiokawa

研究成果: Article査読

抄録

In This paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbersΣn=1F-2s2n and second, for sums of evenly even and unevenly even typesΣn=1F-2s4nΣn=1F-2s4n-2.The numbersΣn=1F-24n-2.

本文言語English
ページ(範囲)173-200
ページ数28
ジャーナルFundamental and Applied Mathematics
16
5
出版ステータスPublished - 2010 12 1

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology
  • Applied Mathematics

フィンガープリント 「Algebraic relations for reciprocal sums of even terms in Fibonacci numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル