Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

C. Elsner, S. Shimomura, I. Shiokawa

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers ∑ n=1 F 2n-1 -1 , ∑ n=1 F 2n-1 -2 , ∑ n=1 F 2n-1 -3 and write each ∑ n=1 F 2n-1 -s (s>4) as an explicit rational function of these three numbers over ℚ. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.

本文言語English
ページ(範囲)429-446
ページ数18
ジャーナルMolecular Neurodegeneration
3
1
DOI
出版ステータスPublished - 2008

ASJC Scopus subject areas

  • 分子生物学
  • 臨床神経学
  • 細胞および分子神経科学

引用スタイル