An Area-Efficient Implementation of Recurrent Neural Network Core for Unsupervised Anomaly Detection

Takuya Sakuma, Hiroki Matsutani

研究成果: Conference contribution

抄録

Toward on-device anomaly detection for time-series data, in this paper, we analyze Echo State Network (ESN), which is a simple form of Recurrent Neural Networks (RNNs), and propose its area-efficient implementation. It is evaluated in terms of the anomaly detection capability and area. (Keywords: On-device learning, Machine learning, and Anomaly detection)

本文言語English
ホスト出版物のタイトルIEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL CHIPS 2020 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728163475
DOI
出版ステータスPublished - 2020 4
イベント23rd IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL CHIPS 2020 - Kokubunji, Japan
継続期間: 2020 4 152020 4 17

出版物シリーズ

名前IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL CHIPS 2020 - Proceedings

Conference

Conference23rd IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL CHIPS 2020
CountryJapan
CityKokubunji
Period20/4/1520/4/17

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Hardware and Architecture
  • Software
  • Electrical and Electronic Engineering
  • Safety, Risk, Reliability and Quality

フィンガープリント 「An Area-Efficient Implementation of Recurrent Neural Network Core for Unsupervised Anomaly Detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル