An artificial hysteresis binary neuron: a model suppressing the oscillatory behaviors of neural dynamics

Y. Takefuji, K. C. Lee

研究成果: Article査読

72 被引用数 (Scopus)

抄録

A hysteresis binary McCulloch-Pitts neuron model is proposed in order to suppress the complicated oscillatory behaviors of neural dynamics. The artificial hysteresis binary neural network is used for scheduling time-multiplex crossbar switches in order to demonstrate the effects of hysteresis. Time-multiplex crossbar switching systems must control traffic on demand such that packet blocking probability and packet waiting time are minimized. The system using n×n processing elements solves an n×n crossbar-control problem with O(1) time, while the best existing parallel algorithm requires O(n) time. The hysteresis binary neural network maximizes the throughput of packets through a crossbar switch. The solution quality of our system does not degrade with the problem size.

本文言語English
ページ(範囲)353-356
ページ数4
ジャーナルBiological Cybernetics
64
5
DOI
出版ステータスPublished - 1991 3月 1
外部発表はい

ASJC Scopus subject areas

  • バイオテクノロジー
  • コンピュータ サイエンス(全般)

フィンガープリント

「An artificial hysteresis binary neuron: a model suppressing the oscillatory behaviors of neural dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル