Analyses of press formability of CFRP sheet considering the fiber kinking and the ductile behavior of resin

Takahiro Hayashi, Tetsuo Oya

研究成果: Conference article査読

抄録

Establishment of a press forming method of carbon fiber reinforced plastic (CFRP) is desired. However, fundamental research on a ductility improving mechanism of CFRP is still insufficient. Since unidirectional CFRP shows different characteristics in compression and tensile deformation, accurate expression in both characteristics is necessary to investigate factors that affect formability. To express fiber kinking and ductile behavior of resin, a microscale model that separated fiber and resin was made. The fiber part in FEM model was tilted as initial misalignment and Gurson-Tvergaard-Needleman (GTN) model was applied to the resin part. To investigate the influence of design parameters such as temperature and initial void fraction on formability, this study performed tensile, compression and bending analyses by changing the resin temperature and initial void fraction. Results of compression analysis showed that the higher the temperature and initial void fraction, the earlier fiber kinking occurrence. Bending analysis showed a similar tendency. These results are physically reasonable. Therefore, these numerical experiments confirmed that the model used in this research is valid for studying factors that affect formability.

本文言語English
論文番号12184
ジャーナルJournal of Physics: Conference Series
1063
1
DOI
出版ステータスPublished - 2018 8月 6
イベントNUMISHEET 2018: 11th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes - Tokyo, Japan
継続期間: 2018 7月 302018 8月 3

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Analyses of press formability of CFRP sheet considering the fiber kinking and the ductile behavior of resin」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル