Analytic self-consistent condensates in quasi-1D superfluid fermi gases in the andreev approximation

Giacomo Marmorini, Ryosuke Yoshii, Shunji Tsuchiya, Muneto Nitta

研究成果: Article査読

抄録

We present an analytic method to approach Eilenberger equation and the associated Bogoliubov-de Gennes equation for quasi-1D fermionic gases. The problem of finding self-consistent inhomogeneous condensates is reduced to solving a certain class of nonlinear Schrödinger equations, whose most general solitonic solution is indeed available. Previously known solutions can be retrieved by taking appropriate limits in the parameters. The applicability of the method extends to systems with population imbalance and subject to external potential. In particular we show that fermionic zero-modes are robust against population imbalance.

本文言語English
ページ(範囲)420-426
ページ数7
ジャーナルJournal of Low Temperature Physics
175
1-2
DOI
出版ステータスPublished - 2014 4

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics

フィンガープリント 「Analytic self-consistent condensates in quasi-1D superfluid fermi gases in the andreev approximation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル