Assessment of hospital performance with a case-mix standardized mortality model using an existing administrative database in Japan

Hiroaki Miyata, Hideki Hashimoto, Hiromasa Horiguchi, Kiyohide Fushimi, Shinya Matsuda

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Background. Few studies have examined whether risk adjustment is evenly applicable to hospitals with various characteristics and case-mix. In this study, we applied a generic prediction model to nationwide discharge data from hospitals with various characteristics. Method. We used standardized data of 1,878,767 discharged patients provided by 469 hospitals from July 1 to October 31, 2006. We generated and validated a case-mix in-hospital mortality prediction model using 50/50 split sample validation. We classified hospitals into two groups based on c-index value (hospitals with c-index 0.8; hospitals with c-index < 0.8) and examined differences in their characteristics. Results. The model demonstrated excellent discrimination as indicated by the high average c-index and small standard deviation (c-index = 0.88 0.04). Expected mortality rate of each hospital was highly correlated with observed mortality rate (r = 0.693, p < 0.001). Among the studied hospitals, 446 (95%) had a c-index of 0.8 and were classified as the higher c-index group. A significantly higher proportion of hospitals in the lower c-index group were specialized hospitals and hospitals with convalescent wards. Conclusion. The model fits well to a group of hospitals with a wide variety of acute care events, though model fit is less satisfactory for specialized hospitals and those with convalescent wards. Further sophistication of the generic prediction model would be recommended to obtain optimal indices to region specific conditions.

本文言語English
論文番号130
ジャーナルBMC Health Services Research
10
DOI
出版ステータスPublished - 2010

ASJC Scopus subject areas

  • 健康政策

フィンガープリント

「Assessment of hospital performance with a case-mix standardized mortality model using an existing administrative database in Japan」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル