TY - JOUR
T1 - Astroglial cell death induced by excessive influx of sodium ions
AU - Takahashi, Shinichi
AU - Shibata, Mamoru
AU - Gotoh, Jun
AU - Fukuuchi, Yasuo
PY - 2000/11/17
Y1 - 2000/11/17
N2 - Na+ influx has been implicated to play an important role in the mechanisms of neuronal cell damage under ischemia as well as in neurodegenerative disorders. Thus far, however, the effects of Na+ influx on astrocytic damage have not been studied extensively. In the present study, we have examined the effects of Na+ influx induced by veratridine (Na+ channel opener), monensin (Na+ ionophore), and glutamate (co-transportation with Na+) on rat cultured astroglial damage. Cells were incubated with bicarbonate buffer with 25 mM glucose containing either 100 μM veratridine, 10 μM monensin, or 1 mM glutamate with or without 1 mM ouabain for 20 h. Cellular damage was evaluated quantitatively by lactate dehydrogenase (LDH) release or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Veratridine, monensin, or glutamate alone did not induce significant astroglial damage. Veratridine and monensin co-incubated with ouabain, which inhibits active extrusion of Na+ by Na+,K+-ATPase, thereby enhances intracellular Na+ accumulation, caused significant cell death (P < 0.001, approximately 50% cell damage), whereas glutamate did not. Na+-free solution substituted by choline (impermeable cation) attenuated cell damage induced by veratridine and monensin markedly, while Li+ substitution (permeable cation) rather exacerbated. Nifedipine (100 μM), a blocker of L-type Ca2+ channel, reduced veratridine-induced glial damage by 50%. Neither bepridil nor benzamil, a blocker of Na+-Ca2+ exchanger, had any protection. Cyclosporin A (1 or 10 μM), an inhibitor of mitochondrial permeability transition or 10 μM N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethyl ketone (zVAD-fmk), which inhibits a broad range of caspases, did not show protective effects. (C) 2000 Elsevier Science B.V.
AB - Na+ influx has been implicated to play an important role in the mechanisms of neuronal cell damage under ischemia as well as in neurodegenerative disorders. Thus far, however, the effects of Na+ influx on astrocytic damage have not been studied extensively. In the present study, we have examined the effects of Na+ influx induced by veratridine (Na+ channel opener), monensin (Na+ ionophore), and glutamate (co-transportation with Na+) on rat cultured astroglial damage. Cells were incubated with bicarbonate buffer with 25 mM glucose containing either 100 μM veratridine, 10 μM monensin, or 1 mM glutamate with or without 1 mM ouabain for 20 h. Cellular damage was evaluated quantitatively by lactate dehydrogenase (LDH) release or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Veratridine, monensin, or glutamate alone did not induce significant astroglial damage. Veratridine and monensin co-incubated with ouabain, which inhibits active extrusion of Na+ by Na+,K+-ATPase, thereby enhances intracellular Na+ accumulation, caused significant cell death (P < 0.001, approximately 50% cell damage), whereas glutamate did not. Na+-free solution substituted by choline (impermeable cation) attenuated cell damage induced by veratridine and monensin markedly, while Li+ substitution (permeable cation) rather exacerbated. Nifedipine (100 μM), a blocker of L-type Ca2+ channel, reduced veratridine-induced glial damage by 50%. Neither bepridil nor benzamil, a blocker of Na+-Ca2+ exchanger, had any protection. Cyclosporin A (1 or 10 μM), an inhibitor of mitochondrial permeability transition or 10 μM N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethyl ketone (zVAD-fmk), which inhibits a broad range of caspases, did not show protective effects. (C) 2000 Elsevier Science B.V.
KW - Astrocyte
KW - Ca
KW - LDH (lactate dehydrogenase)
KW - MTT
KW - Mitochondrion
KW - Na,K-ATPase
KW - Ouabain
UR - http://www.scopus.com/inward/record.url?scp=0034680826&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034680826&partnerID=8YFLogxK
U2 - 10.1016/S0014-2999(00)00790-1
DO - 10.1016/S0014-2999(00)00790-1
M3 - Article
C2 - 11080518
AN - SCOPUS:0034680826
SN - 0014-2999
VL - 408
SP - 127
EP - 135
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 2
ER -