Asymptotic behavior of the number of solutions for non-Archimedean Diophantine approximations with restricted denominators

V. Berthé, H. Nakada, R. Natsui

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider metric results for the asymptotic behavior of the number of solutions of Diophantine approximation inequalities with restricted denominators for Laurent formal power series with coefficients in a finite field. We especially consider approximations by rational functions whose denominators are powers of irreducible polynomials, and study the strong law of large numbers for the number of solutions of the inequalities under consideration.

本文言語English
ページ(範囲)849-866
ページ数18
ジャーナルFinite Fields and their Applications
14
4
DOI
出版ステータスPublished - 2008 11月
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 代数と数論
  • 工学(全般)
  • 応用数学

フィンガープリント

「Asymptotic behavior of the number of solutions for non-Archimedean Diophantine approximations with restricted denominators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル