Audio-Visual Self-Supervised Terrain Type Recognition for Ground Mobile Platforms

Akiyoshi Kurobe, Yoshikatsu Nakajima, Kris Kitani, Hideo Saito

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The ability to recognize and identify terrain characteristics is an essential function required for many autonomous ground robots such as social robots, assistive robots, autonomous vehicles, and ground exploration robots. Recognizing and identifying terrain characteristics is challenging because similar terrains may have very different appearances (e.g., carpet comes in many colors), while terrains with very similar appearance may have very different physical properties (e.g., mulch versus dirt). In order to address the inherent ambiguity in vision-based terrain recognition and identification, we propose a multi-modal self-supervised learning technique that switches between audio features extracted from a microphone attached to the underside of a mobile platform and image features extracted by a camera on the platform to cluster terrain types. The terrain cluster labels are then used to train an image-based real-time CNN (Convolutional Neural Network) to predict terrain types changes. Through experiments, we demonstrate that the proposed self-supervised terrain type recognition method achieves over 80% accuracy, which greatly outperforms several baselines and suggests strong potential for assistive applications.

本文言語English
論文番号9354792
ページ(範囲)29970-29979
ページ数10
ジャーナルIEEE Access
9
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「Audio-Visual Self-Supervised Terrain Type Recognition for Ground Mobile Platforms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル