Automatic adaptive metadata generation for image retrieval

Hideyasu Sasaki, Yasushi Kiyoki

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In this paper, we present an automatic adaptive metadata generation system using content analysis of sample images. First, our system screens out improper query images for metadata generation by using CBIR that computes structural similarity between sample images and query images. Second, the system generates metadata by selecting sample indexes attached to the sample images that are structurally similar to query images. Third, the system detects improper metadata and re-generates proper metadata by identifying wrongly selected metadata. Our system has improved metadata generation by 23.5% on recall ratio and 37% on fallout ratio rather than just using the results of content analysis.

本文言語English
ホスト出版物のタイトルProceedings - 2005 Symposium on Applications and the Internet Workshops, SAINT2005
ページ426-429
ページ数4
出版ステータスPublished - 2005 12月 1
イベント2005 Symposium on Applications and the Internet Workshops, SAINT2005 - Trento, Italy
継続期間: 2005 1月 312005 2月 4

出版物シリーズ

名前Proceedings - 2005 Symposium on Applications and the Internet Workshops, SAINT2005
2005

Other

Other2005 Symposium on Applications and the Internet Workshops, SAINT2005
国/地域Italy
CityTrento
Period05/1/3105/2/4

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Automatic adaptive metadata generation for image retrieval」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル