AVERAGE DERIVATIVE ESTIMATION under MEASUREMENT ERROR

Hao Dong, Taisuke Otsu, Luke Taylor

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper, we derive the asymptotic properties of the density-weighted average derivative estimator when a regressor is contaminated with classical measurement error and the density of this error must be estimated. Average derivatives of conditional mean functions are used extensively in economics and statistics, most notably in semiparametric index models. As well as ordinary smooth measurement error, we provide results for supersmooth error distributions. This is a particularly important class of error distribution as it includes the Gaussian density. We show that under either type of measurement error, despite using nonparametric deconvolution techniques and an estimated error characteristic function, we are able to achieve a √n-rate of convergence for the average derivative estimator. Interestingly, if the measurement error density is symmetric, the asymptotic variance of the average derivative estimator is the same irrespective of whether the error density is estimated or not. The promising finite sample performance of the estimator is shown through a Monte Carlo simulation.

本文言語English
ページ(範囲)1004-1033
ページ数30
ジャーナルEconometric Theory
37
5
DOI
出版ステータスPublished - 2021 10 13
外部発表はい

ASJC Scopus subject areas

  • 社会科学(その他)
  • 経済学、計量経済学

フィンガープリント

「AVERAGE DERIVATIVE ESTIMATION under MEASUREMENT ERROR」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル