TY - GEN
T1 - Bilateral Video Magnification Filter
AU - Takeda, Shoichiro
AU - Niwa, Kenta
AU - Isogawa, Mariko
AU - Shimizu, Shinya
AU - Okami, Kazuki
AU - Aono, Yushi
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Eulerian video magnification (EVM) has progressed to magnify subtle motions with a target frequency even under the presence of large motions of objects. However, existing EVM methods often fail to produce desirable results in real videos due to (1) misextracting subtle motions with a non-target frequency and (2) collapsing results when large de/acceleration motions occur (e.g., objects suddenly start, stop, or change direction). To enhance EVM performance on real videos, this paper proposes a bilateral video magnification filter (BVMF) that offers simple yet robust temporal filtering. BVMF has two kernels; (I) one kernel performs temporal bandpass filtering via a Laplacian of Gaussian whose passband peaks at the target frequency with unity gain and (II) the other kernel excludes large motions outside the magnitude of interest by Gaussian filtering on the intensity of the input signal via the Fourier shift theorem. Thus, BVMF extracts only subtle motions with the target frequency while excluding large motions outside the magnitude of interest, regardless of motion dynamics. In addition, BVMF runs the two kernels in the temporal and intensity domains simultaneously like the bilateral filter does in the spatial and intensity domains. This simplifies implementation and, as a secondary effect, keeps the memory usage low. Experiments conducted on synthetic and real videos show that BVMF outperforms state-of-the-art methods.
AB - Eulerian video magnification (EVM) has progressed to magnify subtle motions with a target frequency even under the presence of large motions of objects. However, existing EVM methods often fail to produce desirable results in real videos due to (1) misextracting subtle motions with a non-target frequency and (2) collapsing results when large de/acceleration motions occur (e.g., objects suddenly start, stop, or change direction). To enhance EVM performance on real videos, this paper proposes a bilateral video magnification filter (BVMF) that offers simple yet robust temporal filtering. BVMF has two kernels; (I) one kernel performs temporal bandpass filtering via a Laplacian of Gaussian whose passband peaks at the target frequency with unity gain and (II) the other kernel excludes large motions outside the magnitude of interest by Gaussian filtering on the intensity of the input signal via the Fourier shift theorem. Thus, BVMF extracts only subtle motions with the target frequency while excluding large motions outside the magnitude of interest, regardless of motion dynamics. In addition, BVMF runs the two kernels in the temporal and intensity domains simultaneously like the bilateral filter does in the spatial and intensity domains. This simplifies implementation and, as a secondary effect, keeps the memory usage low. Experiments conducted on synthetic and real videos show that BVMF outperforms state-of-the-art methods.
KW - Image and video synthesis and generation
KW - Low-level vision
UR - http://www.scopus.com/inward/record.url?scp=85141747100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141747100&partnerID=8YFLogxK
U2 - 10.1109/CVPR52688.2022.01685
DO - 10.1109/CVPR52688.2022.01685
M3 - Conference contribution
AN - SCOPUS:85141747100
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 17348
EP - 17357
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Y2 - 19 June 2022 through 24 June 2022
ER -