Binary neurons with analog communication links for solving large-scale optimization problems

Yoon Pin Simon Foo, Yoshiyasu Takefuji, Harold Szu

研究成果: Conference article査読

6 被引用数 (Scopus)

抄録

We explore the applications of binary neurons with analog conductance or communication links in solving large-scale NP-complete optimization problems such as the classical traveling salesperson problems (TSP) and job-shop scheduling. In particular, the energy function of J.J. Hopfield and D.W. Tank neural network model is reformulated so that the network is likely to converge to a proportional number of valid solutions as the size of problem scales up. G.V. Wilson and G.S. Pawley identified the reasons for failure on the Hopfield and Tank computation algorithm in their attempts to solve a 10-city TSP. K. Sheff and H. Szu proposed a necessary and sufficient condition based on binary neurons and traceless energy for a Hopfield and Tank network to converge to stable states. In this paper, we study the effectiveness of this fast neural network convergent scheme through two case studies: an n-job m-machine job-shop problem and an N-city TSP.

本文言語English
ページ数1
ジャーナルNeural Networks
1
1 SUPPL
DOI
出版ステータスPublished - 1988 1月 1
外部発表はい
イベントInternational Neural Network Society 1988 First Annual Meeting - Boston, MA, USA
継続期間: 1988 9月 61988 9月 10

ASJC Scopus subject areas

  • 認知神経科学
  • 人工知能

フィンガープリント

「Binary neurons with analog communication links for solving large-scale optimization problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル