Blind image deconvolution using specified HPF for feature extraction and conjugate gradient method in frequency domain

Takanori Fujisawa, Masaaki Ikehara

研究成果: Conference contribution

抄録

Image deconvolution is the task to recover the image information that was lost by taking photos with blur motion. Especially blind image deconvolution requires no prior informations other than the blurred image. This problem is seriously ill-posed and an additional operation is required such as extracting image features. In this paper, we present a blind image deconvolution framework using a specified highpass filter (HPF) for feature extraction to estimate a blur kernel. This problem can consider the kernel estimation in the region where salient edges are not present and improve the quality of the estimated kernel. Our approach also accelerates the deconvolution process by utilizing a conjugate gradient method in a frequency domain. This process eliminates costly convolution operations from the iterative updating and reduces the calculation time. Evaluation for 20 test images shows our framework not only performs faster than conventional frameworks but also improves the quality of recovered images.

本文言語English
ホスト出版物のタイトル2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings
出版社IEEE Computer Society
ページ2713-2717
ページ数5
ISBN(電子版)9781467399616
DOI
出版ステータスPublished - 2016 8月 3
イベント23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, United States
継続期間: 2016 9月 252016 9月 28

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
2016-August
ISSN(印刷版)1522-4880

Other

Other23rd IEEE International Conference on Image Processing, ICIP 2016
国/地域United States
CityPhoenix
Period16/9/2516/9/28

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「Blind image deconvolution using specified HPF for feature extraction and conjugate gradient method in frequency domain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル