Body Bias Control on a CGRA based on Convex Optimization

Takuya Kojima, Hayate Okuhara, Masaaki Kondo, Hideharu Amano

研究成果: Conference contribution

抄録

Body biasing is one of the critical techniques to realize more energy-efficient computing with reconfigurable devices, such as Coarse-Grained Reconfigurable Architectures (CGRAs). Its benefit depends on the control granularity, whereas fine-grained control makes it challenging to find the best body bias voltage for each domain due to the complexity of the optimization problem. This work reformulates the optimization problem and introduces continuous relaxation to solve it faster than previous work. Experimental result shows the proposed method can solve the problem within 0.5 sec for all benchmarks in any conditions and demonstrates up to 5.65x speed-up compared to the previous method with negligible loss of accuracy.

本文言語English
ホスト出版物のタイトル25th IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL Chips 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665419895
DOI
出版ステータスPublished - 2022
イベント25th IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL Chips 2022 - Tokyo, Japan
継続期間: 2022 4月 202022 4月 22

出版物シリーズ

名前25th IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL Chips 2022 - Proceedings

Conference

Conference25th IEEE Symposium on Low-Power and High-Speed Chips and Systems, COOL Chips 2022
国/地域Japan
CityTokyo
Period22/4/2022/4/22

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 人工知能
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Body Bias Control on a CGRA based on Convex Optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル