Bounding the number of k-faces in arrangements of hyperplanes

Komei Fukuda, Shigemasa Saito, Akihisa Tamura, Takeshi Tokuyama

研究成果: Article査読

10 被引用数 (Scopus)

抄録

We study certain structural problems of arrangements of hyperplanes in d-dimensional Euclidean space. Of special interest are nontrivial relations satisfied by the f-vector f=(f0,f1,...,fd) of an arrangement, where fk denotes the number of k-faces. The first result is that the mean number of (k-1)-faces lying on the boundary of a fixed k-face is less than 2k in any arrangement, which implies the simple linear inequality fk>(d-k+1) kf--1 if fk≠0. Similar results hold for spherical arrangements and oriented matroids. We also show that the f-vector and the h-vector of a simple arrangement is logarithmic concave, and hence unimodal.

本文言語English
ページ(範囲)151-165
ページ数15
ジャーナルDiscrete Applied Mathematics
31
2
DOI
出版ステータスPublished - 1991 4 15
外部発表はい

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Bounding the number of k-faces in arrangements of hyperplanes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル