Bounding the number of k-faces in arrangements of hyperplanes

Komei Fukuda, Shigemasa Saito, Akihisa Tamura, Takeshi Tokuyama

研究成果: Article

8 引用 (Scopus)

抜粋

We study certain structural problems of arrangements of hyperplanes in d-dimensional Euclidean space. Of special interest are nontrivial relations satisfied by the f-vector f=(f0,f1,...,fd) of an arrangement, where fk denotes the number of k-faces. The first result is that the mean number of (k-1)-faces lying on the boundary of a fixed k-face is less than 2k in any arrangement, which implies the simple linear inequality fk>(d-k+1) kf--1 if fk≠0. Similar results hold for spherical arrangements and oriented matroids. We also show that the f-vector and the h-vector of a simple arrangement is logarithmic concave, and hence unimodal.

元の言語English
ページ(範囲)151-165
ページ数15
ジャーナルDiscrete Applied Mathematics
31
発行部数2
DOI
出版物ステータスPublished - 1991 4 15
外部発表Yes

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント Bounding the number of k-faces in arrangements of hyperplanes' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用