Brachistochrone of entanglement for spin chains

Alberto Carlini, Tatsuhiko Koike

研究成果: Article査読

1 被引用数 (Scopus)


We analytically investigate the role of entanglement in time-optimal state evolution as an application of the quantum brachistochrone, a general method for obtaining the optimal time-dependent Hamiltonian for reaching a target quantum state. As a model, we treat two qubits indirectly coupled through an intermediate qubit that is directly controllable, which represents a typical situation in quantum information processing. We find the time-optimal unitary evolution law and quantify residual entanglement by the two-tangle between the indirectly coupled qubits, for all possible sets of initial pure quantum states of a tripartite system. The integrals of the motion of the brachistochrone are determined by fixing the minimal time at which the residual entanglement is maximized. Entanglement plays a role for W and Greenberger-Horne-Zeilinger (GHz) initial quantum states, and for the bi-separable initial state in which the indirectly coupled qubits have a nonzero value of the 2-tangle.

ジャーナルJournal of Physics A: Mathematical and Theoretical
出版ステータスPublished - 2017 2月 8

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)


「Brachistochrone of entanglement for spin chains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。