TY - JOUR
T1 - Branes and black holes in collision
AU - Flachi, Antonino
AU - Tanaka, Takahiro
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 2007/7/9
Y1 - 2007/7/9
N2 - We study the collision of a brane with a black hole. Our aim is to explore the topology changing process of perforation of a brane. The brane is described as a field theoretical domain wall in the context of an axionlike model consisting of a complex scalar effective field theory with approximate U(1) symmetry. We simulate numerically the dynamics of the collision and illustrate the transition from the configuration without a hole to the pierced one with the aid of a phase diagram. The process of perforation is found to depend on the collisional velocity, and, contrary to our expectation, we observe that above a critical value of the velocity, the black hole has no chance to perforate the wall. That is: high energy collisions do not assist piercing. We also show that, only when the model parameters are fine-tuned so that the energy scale of the string is very close to that of the domain wall, the collision of the wall with the black hole has a possibility to provide a mechanism to erase domain walls, if the hole expands. However, in such cases, domain walls will form with many holes edged by a string and therefore disappear eventually. Therefore this mechanism is unlikely to be a solution to the cosmological domain wall problem, although it may cause some minor effects on the evolution of a domain wall network.
AB - We study the collision of a brane with a black hole. Our aim is to explore the topology changing process of perforation of a brane. The brane is described as a field theoretical domain wall in the context of an axionlike model consisting of a complex scalar effective field theory with approximate U(1) symmetry. We simulate numerically the dynamics of the collision and illustrate the transition from the configuration without a hole to the pierced one with the aid of a phase diagram. The process of perforation is found to depend on the collisional velocity, and, contrary to our expectation, we observe that above a critical value of the velocity, the black hole has no chance to perforate the wall. That is: high energy collisions do not assist piercing. We also show that, only when the model parameters are fine-tuned so that the energy scale of the string is very close to that of the domain wall, the collision of the wall with the black hole has a possibility to provide a mechanism to erase domain walls, if the hole expands. However, in such cases, domain walls will form with many holes edged by a string and therefore disappear eventually. Therefore this mechanism is unlikely to be a solution to the cosmological domain wall problem, although it may cause some minor effects on the evolution of a domain wall network.
UR - http://www.scopus.com/inward/record.url?scp=34447292521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447292521&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.76.025007
DO - 10.1103/PhysRevD.76.025007
M3 - Article
AN - SCOPUS:34447292521
SN - 1550-7998
VL - 76
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 2
M1 - 025007
ER -