BRein Memory: A Single-Chip Binary/Ternary Reconfigurable in-Memory Deep Neural Network Accelerator Achieving 1.4 TOPS at 0.6 W

Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shimpei Sato, Hiroki Nakahara, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Tetsuya Asai, Tadahiro Kuroda, Masato Motomura

研究成果: Article

26 引用 (Scopus)

抜粋

A versatile reconfigurable accelerator architecture for binary/ternary deep neural networks is presented. In-memory neural network processing without any external data accesses, sustained by the symmetry and simplicity of the computation of the binary/ternaty neural network, improves the energy efficiency dramatically. The prototype chip is fabricated, and it achieves 1.4 TOPS (tera operations per second) peak performance with 0.6-W power consumption at 400-MHz clock. The application examination is also conducted.

元の言語English
ジャーナルIEEE Journal of Solid-State Circuits
DOI
出版物ステータスAccepted/In press - 2017 12 19

    フィンガープリント

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

これを引用

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., Takamaeda-Yamazaki, S., Ikebe, M., Asai, T., Kuroda, T., & Motomura, M. (受理済み/印刷中). BRein Memory: A Single-Chip Binary/Ternary Reconfigurable in-Memory Deep Neural Network Accelerator Achieving 1.4 TOPS at 0.6 W. IEEE Journal of Solid-State Circuits. https://doi.org/10.1109/JSSC.2017.2778702