Bus Crowdedness Sensing System Based on Carbon Dioxide Concentration

Wenhao Huang, Akira Tsuge, Yin Chen, Tadashi Okoshi, Jin Nakazawa

研究成果: Conference contribution

抄録

Crowdedness sensing of buses is playing an important role in the disease control of COVID-19 and bus resource scheduling. This research analyzes the relationship between carbon dioxide concentration, bus environment and the number of passengers by linear regression. Our prototype system collects the data of bus environment and carbon dioxide concentration to estimate the number of passengers in real time. By collecting the sensing data from a shuttle bus of university campus, we experimentally evaluate the feasibility and sensing performance of the crowdedness estimation model.

本文言語English
ホスト出版物のタイトルSenSys 2022 - Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems
出版社Association for Computing Machinery, Inc
ページ806-807
ページ数2
ISBN(電子版)9781450398862
DOI
出版ステータスPublished - 2022 11月 6
イベント20th ACM Conference on Embedded Networked Sensor Systems, SenSys 2022 - Boston, United States
継続期間: 2022 11月 62022 11月 9

出版物シリーズ

名前SenSys 2022 - Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems

Conference

Conference20th ACM Conference on Embedded Networked Sensor Systems, SenSys 2022
国/地域United States
CityBoston
Period22/11/622/11/9

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Bus Crowdedness Sensing System Based on Carbon Dioxide Concentration」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル