Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis

Saori Nagao, Kazuaki Taguchi, Hiromi Sakai, Ryota Tanaka, Hirohisa Horinouchi, Hiroshi Watanabe, Koichi Kobayashi, Masaki Otagiri, Toru Maruyama

研究成果: Article査読

28 被引用数 (Scopus)

抄録

Carbon monoxide (CO) has potent anti-inflammatory and anti-oxidant effects. We report herein on the preparation of a nanotechnology-based CO donor, CO-bound hemoglobin-vesicles (CO-HbV). We hypothesized that CO-HbV could have a therapeutic effect on idiopathic pulmonary fibrosis (IPF), an incurable lung fibrosis, that is thought to involve inflammation and the production of reactive oxygen species (ROS). Pulmonary fibril formation and respiratory function were quantitatively evaluated by measuring hydroxyproline levels and forced vital capacity, respectively, using a bleomycin-induced pulmonary fibrosis mice model. CO-HbV suppressed the progression of pulmonary fibril formation and improved respiratory function compared to saline and HbV. The suppressive effect of CO-HbV on pulmonary fibrosis can be attributed to a decrease in ROS generation by inflammatory cells, NADPH oxidase 4 and the production of inflammatory cells, cytokines and transforming growth factor-β in the lung. This is the first demonstration of the inhibitory effect of CO-HbV on the progression of pulmonary fibrosis via the anti-oxidative and anti-inflammatory effects of CO in the bleomycin-induced pulmonary fibrosis mice model. CO-HbV has the potential for use in the treatment of, not only IPF, but also a variety of other ROS and inflammation-related disorders.

本文言語English
ページ(範囲)6553-6562
ページ数10
ジャーナルBiomaterials
35
24
DOI
出版ステータスPublished - 2014 8月
外部発表はい

ASJC Scopus subject areas

  • バイオエンジニアリング
  • セラミックおよび複合材料
  • 生物理学
  • 生体材料
  • 材料力学

フィンガープリント

「Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル