Cation permeability change caused by l-glutamate in cultured rat hippocampal neurons

Seiji Ozawa, Tomoko Nakamura, Michisuke Yuzaki

研究成果: Article査読

18 被引用数 (Scopus)

抄録

The ionic mechanism of the membrane permeability changes caused by l-glutamate in hippocampal neurons prepared from 17- to 19-day-old fetal rat in dispersed cell cultures was studied with the whole-cell variation of the patch electrode voltage-clamp technique. The cultured hippocampal neurons became sensitive to glutamate 7 days after plating, and thereafter the sensitivity gradually increased. The conductance increase caused by glutamate was voltage-sensitive, decreasing with membrane hyperpolarization at potentials more negative than -40 mV. The relative permeability of glutamate-activated channels to alkali metal and alkaline earth cations was estimated by reversal potential measurements. The alkali metal cations, Li+, Na+, K+, Rb+ and Cs+ were permeant to the glutamate channels, and the selectively among them was weak. The alkaline earth cations, Ca2+, Sr2+ and Ba2+ were more permeant than the alkali metals. The permeability ratios of these divalent cations relative to Na+ were 2.4 (Ca2+), 2.4 (Sr2+) and 2.8 (Ba2+), respectively. Mg2+ was much less permeant and the permeability ratio (PMg/PNa) was only 0.1. Anion conductance made no contribution to the glutamate-induced current. Functional implications of the glutamate-induced increase in Ca2+-influx were discussed.

本文言語English
ページ(範囲)85-94
ページ数10
ジャーナルBrain Research
443
1-2
DOI
出版ステータスPublished - 1988 3 8
外部発表はい

ASJC Scopus subject areas

  • Neuroscience(all)
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

フィンガープリント 「Cation permeability change caused by l-glutamate in cultured rat hippocampal neurons」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル