Chromatic Numbers and Cycle Parities of Quadrangulations on Nonorientable Closed Surfaces

Atsuhiro Nakamoto, Seiya Negami, Katsuhiro Ota

研究成果: Article

抜粋

In this paper, we shall show that every quadrangulation on a nonorientable closed surface with sufficiently large representativity has chromatic number 2, 3 or 4 and characterize those for each value, discussing an algebraic invariant called a cycle parity. In particular, we shall prove that such a quadrangulation is 4-chromatic if and only if it has an odd cycle which cuts open the host surface into an orientable surface.

元の言語English
ページ(範囲)509-518
ページ数10
ジャーナルElectronic Notes in Discrete Mathematics
11
DOI
出版物ステータスPublished - 2002 7 1

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント Chromatic Numbers and Cycle Parities of Quadrangulations on Nonorientable Closed Surfaces' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用