CLAHE implementation and evaluation on a low-end FPGA board by high-level synthesis

Koki Honda, Kaijie Wei, Masatoshi Arai, Hideharu Amano

研究成果: Article査読

抄録

Automobile companies have been trying to replace side mirrors of cars with small cameras for reducing air resistance. It enables us to apply some image processing to improve the quality of the image. Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of such techniques to improve the quality of the image for the side mirror camera, which requires a large computation performance. Here, an implementation method of CLAHE on a low-end FPGA board by high-level synthesis is proposed. CLAHE has two main processing parts: cumulative distribution function (CDF) generation, and bilinear interpolation. During the CDF generation, the effect of increasing loop initiation interval can be greatly reduced by placing multiple Processing Elements (PEs). and during the interpolation, latency and BRAM usage were reduced by revising how to hold CDF and calculation method. Finally, by connecting each module with streaming interfaces, using data flow pragmas, overlapping processing, and hiding data transfer, our HLS implementation achieved a comparable result to that of HDL. We parameterized the components of the algorithm so that the number of tiles and the size of the image can be easily changed. The source code for this research can be downloaded from https://github.com/kokihonda/fpga clahe.

本文言語English
ページ(範囲)2048-2056
ページ数9
ジャーナルIEICE Transactions on Information and Systems
E104D
12
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「CLAHE implementation and evaluation on a low-end FPGA board by high-level synthesis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル