Classifying patents based on their semantic content

Antonin Bergeaud, Yoann Potiron, Juste Raimbault

研究成果: Article査読

14 被引用数 (Scopus)

抄録

In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network, not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information.

本文言語English
論文番号e0176310
ジャーナルPloS one
12
4
DOI
出版ステータスPublished - 2017 4

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

フィンガープリント 「Classifying patents based on their semantic content」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル