Computing knapsack solutions with cardinality robustness

Naonori Kakimura, Kazuhisa Makino, Kento Seimi

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this paper, we show that, for any ε > 0, the problem of deciding whether the knapsack problem admits a (ν + ε)-robust solution is weakly NP-hard, where ν denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a ν-robust knapsack solution [7], this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial time approximation scheme (FPTAS) for computing a max-robust knapsack solution.

本文言語English
ホスト出版物のタイトルAlgorithms and Computation - 22nd International Symposium, ISAAC 2011, Proceedings
ページ693-702
ページ数10
DOI
出版ステータスPublished - 2011 12月 26
外部発表はい
イベント22nd International Symposium on Algorithms and Computation, ISAAC 2011 - Yokohama, Japan
継続期間: 2011 12月 52011 12月 8

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7074 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other22nd International Symposium on Algorithms and Computation, ISAAC 2011
国/地域Japan
CityYokohama
Period11/12/511/12/8

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Computing knapsack solutions with cardinality robustness」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル