Computing knapsack solutions with cardinality robustness

Naonori Kakimura, Kazuhisa Makino, Kento Seimi

研究成果: Article査読

9 被引用数 (Scopus)

抄録

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this paper, we show that, for any ε > 0, the problem of deciding whether the knapsack problem admits a (ν + ε)-robust solution is weakly NP-hard, where ν denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a ν-robust knapsack solution, this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial-time approximation scheme(FPTAS) for computing a max-robust knapsack solution.

本文言語English
ページ(範囲)469-483
ページ数15
ジャーナルJapan Journal of Industrial and Applied Mathematics
29
3
DOI
出版ステータスPublished - 2012 10
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)
  • 応用数学

フィンガープリント

「Computing knapsack solutions with cardinality robustness」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル