TY - JOUR
T1 - Conceptual design of a poloidal field coil system and operation scenario for an inductively operated day-long pulsed tokamak reactor
AU - Wang, J. F.
AU - Yamamoto, T.
AU - Amano, T.
AU - Ogawa, Y.
AU - Okano, K.
AU - Inoue, N.
PY - 1995/3/3
Y1 - 1995/3/3
N2 - The conceptual design of a poloidal field coil system and operation scenario for an inductively operated day-long pulsed tokamak (IDLT) reactor are discussed. Much attention is paid to the start-up and shut-down phase, because a shorter dwell time is preferable in the pulsed reactor. A plasma current ramp-up time of 100 s is achievable with a power supply of 1.4 GW. Including the current ramp-down time and recharging periods, it is found that a dwell time of 5-10 min is feasible for IDLT reactor operation. The average hysteresis loss of the central solenoid coil is about 5 kW during the current ramp-up phase, and is acceptable for the superconducting coils. Plasma performance is analyzed with a 1.5-dimensional transport code, where a Bohm type transport model is employed. It is found that ignition can be initiated with an auxiliary heating power of 40 MW with the H factor of approximately 2, and can be sustained for a helium recycling coefficient less than RHe = 0.99. For IDLT reference operation with RHe = 0.95 and peaking parameter Cv = 1.0, it is found that the helium accumulation fraction is 9.8%, the ratio of helium effective particle confinement time τp* to energy confinement time τE is 7.8, and the bootstrap current fraction is 40%. During the shut-down phase, the decrease in plasma density is slower than the decrease in fusion power, and an auxiliary heating power of 20 MW is required to avoid density-limit disruption.
AB - The conceptual design of a poloidal field coil system and operation scenario for an inductively operated day-long pulsed tokamak (IDLT) reactor are discussed. Much attention is paid to the start-up and shut-down phase, because a shorter dwell time is preferable in the pulsed reactor. A plasma current ramp-up time of 100 s is achievable with a power supply of 1.4 GW. Including the current ramp-down time and recharging periods, it is found that a dwell time of 5-10 min is feasible for IDLT reactor operation. The average hysteresis loss of the central solenoid coil is about 5 kW during the current ramp-up phase, and is acceptable for the superconducting coils. Plasma performance is analyzed with a 1.5-dimensional transport code, where a Bohm type transport model is employed. It is found that ignition can be initiated with an auxiliary heating power of 40 MW with the H factor of approximately 2, and can be sustained for a helium recycling coefficient less than RHe = 0.99. For IDLT reference operation with RHe = 0.95 and peaking parameter Cv = 1.0, it is found that the helium accumulation fraction is 9.8%, the ratio of helium effective particle confinement time τp* to energy confinement time τE is 7.8, and the bootstrap current fraction is 40%. During the shut-down phase, the decrease in plasma density is slower than the decrease in fusion power, and an auxiliary heating power of 20 MW is required to avoid density-limit disruption.
UR - http://www.scopus.com/inward/record.url?scp=0029633973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029633973&partnerID=8YFLogxK
U2 - 10.1016/0920-3796(95)80008-L
DO - 10.1016/0920-3796(95)80008-L
M3 - Article
AN - SCOPUS:0029633973
VL - 29
SP - 69
EP - 77
JO - Fusion Engineering and Design
JF - Fusion Engineering and Design
SN - 0920-3796
IS - C
ER -