Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities

Masaharu Ishikawa, Keisuke Nemoto

研究成果: Article

2 引用 (Scopus)

抜粋

We give upper bounds of the Matveev complexities of two-bridge link complements by constructing their spines explicitly. In particular, we determine the complexities for an infinite sequence of two-bridge links corresponding to the continued fractions of the form [2, 1,…, 1, 2]. We also give upper bounds for the 3-manifolds obtained as meridian-cyclic branched coverings of the 3-sphere along two-bridge links.

元の言語English
ページ(範囲)149-162
ページ数14
ジャーナルHiroshima Mathematical Journal
46
発行部数2
出版物ステータスPublished - 2016 7
外部発表Yes

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

フィンガープリント Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用