### 抜粋

We give upper bounds of the Matveev complexities of two-bridge link complements by constructing their spines explicitly. In particular, we determine the complexities for an infinite sequence of two-bridge links corresponding to the continued fractions of the form [2, 1,…, 1, 2]. We also give upper bounds for the 3-manifolds obtained as meridian-cyclic branched coverings of the 3-sphere along two-bridge links.

元の言語 | English |
---|---|

ページ（範囲） | 149-162 |

ページ数 | 14 |

ジャーナル | Hiroshima Mathematical Journal |

巻 | 46 |

発行部数 | 2 |

出版物ステータス | Published - 2016 7 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Analysis
- Algebra and Number Theory
- Geometry and Topology

## フィンガープリント Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Ishikawa, M., & Nemoto, K. (2016). Construction of spines of two-bridge link complements and upper bounds of their Matveev complexities.

*Hiroshima Mathematical Journal*,*46*(2), 149-162.