Controlling the adhesion between diamond-like carbon (DLC) film and high-density polyethylene (HDPE) substrate

T. Hoshida, D. Tsubone, K. Takada, H. Kodama, T. Hasebe, A. Kamijo, T. Suzuki, A. Hotta

研究成果: Article査読

32 被引用数 (Scopus)

抄録

Polyethylene (PE) is a semi-crystalline polyolefin widely used in consumer products and for molding materials due to its excellent thermal properties. Among its remarkable physical and chemical properties, however, one characteristic that may have limited the expansive usage of PE is its poor adhesion property. In this work, the adhesion between Diamond-like Carbon (DLC) and high-density polyethylene (HDPE) was investigated. The peel strength of DLC-deposited HDPE was found to be 20 times as high as that of non-treated HDPE. Further improvement in adhesion was observed in fluorinated DLC (F-DLC). By applying fluorine (C2F6) etching to DLC, the peel strength eventually increased up to 60 times as compared with that of pure HDPE without any pretreatment. From the surface observation and the experimental results of the surface free energy of modified HDPE, it is surmised that the mechanism behind this phenomenon is principally due to the formation of nano-scale anchors that were formed during the DLC deposition process. Further etching of the HDPE substrate by fluorine radicals eventually increased the number of the anchors, leading to a significant improvement in the adhesion between HDPE and F-DLC.

本文言語English
ページ(範囲)1089-1093
ページ数5
ジャーナルSurface and Coatings Technology
202
4-7
DOI
出版ステータスPublished - 2007 12 15

ASJC Scopus subject areas

  • 化学 (全般)
  • 凝縮系物理学
  • 表面および界面
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Controlling the adhesion between diamond-like carbon (DLC) film and high-density polyethylene (HDPE) substrate」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル