Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating

K. Enomoto, T. Hasebe, R. Asakawa, A. Kamijo, Y. Yoshimoto, T. Suzuki, K. Takahashi, A. Hotta

研究成果: Article査読

33 被引用数 (Scopus)


During the past year, we have witnessed the evolution of an intense public controversy regarding late thrombosis following implantation of drug eluting stent (DES) in patients with obstructive coronary artery disease. To overcome the problem, DES should possess sufficient biocompatibility and non-thrombogenicity with a controlled drug release system. A new DES composed of biocompatible polymers coated with antithrombogenic diamond-like carbon (DLC) coating was proposed. In this study, the drug release profile of the newly proposed drug eluting system was thoroughly investigated. Three polymers were selected as base drug-reservoir materials: hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC), hydrophobic poly (ethylene-co-vinyl acetate) (EVA) and less hydrophobic polyurethane (PU). The three polymers are currently used or studied for biomedical materials, while MPC and DLC were already confirmed as excellent biocompatible materials with antithrombogenicity. After coating the lattice-like patterned DLC on both polymers containing drug, samples were soaked in 2 ml of medium of phosphate-buffered saline with 10% ethanol. The drug release rate was measured by a spectrophotometer. The percentile cover area of patterned DLC on polymers was varied from 0% (without DLC) to 100% (fully covered). The sample without DLC coating presented an initial burst of the drug release from the polymer matrix, whereas the DLC-coated samples inhibited the initial burst release from polymers within the first five days of the experiments. It was found that the drug eluting profiles could be effectively controlled by changing the cover area of micro-patterned DLC coatings on polymers, which may be applicable to the next-generation DES system that eventually prevents late thrombosis.

ジャーナルDiamond and Related Materials
出版ステータスPublished - 2010 7月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 化学 (全般)
  • 機械工学
  • 材料化学
  • 電子工学および電気工学


「Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。