Crack formation in membrane electrode assembly under static and cyclic loadings

Yusuke Kai, Yuki Kitayama, Masaki Omiya, Tomoaki Uchiyama, Manabu Kato

研究成果: Article査読

21 被引用数 (Scopus)


The mechanical reliability of membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs) is a major concern for fuel cell vehicles. Hygrothermal cyclic conditions induce mechanical stress in MEAs and cracks form under operating conditions. This paper investigates the failure mechanism of MEAs under several mechanical and environmental conditions with the aim of designing durable PEFCs. We performed static tensile tests and low-cycle fatigue tests on MEAs. During the tensile tests, the temperature and humidity of the test chamber were controlled and surface crack formation of MEAs was observed in situ by a video microscope. Low-cycle fatigue tests were performed at ambient conditions and the number of cycles to crack formation was measured. The results reveal that the temperature and the humidity affect the mechanical properties of MEA. Observations of MEAs during tensile tests reveal that cracks form on the surface of catalyst layers immediately after the MEAs yield. These results indicate that reducing the deformation mismatch between the catalyst layer and the proton exchange membrane is important for suppressing crack formation in MEAs. The results of low-cycle fatigue tests reveal that the fatigue strength of a MEA follows the Coffin-Manson law so that fatigue design of MEAs based on the Coffin-Manson law is possible. This result is valuable for designing durable PEFCs.

ジャーナルJournal of Fuel Cell Science and Technology
出版ステータスPublished - 2013 7 22

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • 材料力学
  • 機械工学


「Crack formation in membrane electrode assembly under static and cyclic loadings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。