Crude oil spot price forecasting based on multiple crude oil markets and timeframes

Shangkun Deng, Akito Sakurai

研究成果: Article査読

10 被引用数 (Scopus)


This study proposes a multiple kernel learning (MKL)-based regression model for crude oil spot price forecasting and trading. We used a well-known trend-following technical analysis indicator, the moving average convergence and divergence (MACD) indicator, for extracting features from original spot prices. Additionally, we factored in the possibility that movements of target crude oil prices may be related to other important crude oil markets besides the target market for the prediction time horizon since traders may find price movement information within other relevant crude oil markets useful. We also considered multiple timeframes in this study since trends may differ across different timeframes and, in fact, traders may use their own timeframes. Therefore, for forecasting target crude oil prices, this study emphasizes on features pertaining to other important crude oil markets and different timeframes in addition to features of the target crude oil market and target timeframe. Moreover, the MKL framework has been used to fuse information extracted from different sources and timeframes of the same data source. Experimental results show that out-of-sample forecasting using the MKL method is superior to benchmark methods in terms of root mean square error (RMSE) and average percentage profit (APP). They also show that the information from multiple timeframes is useful for prediction, but that from another crude oil market is not.

出版ステータスPublished - 2014 5

ASJC Scopus subject areas

  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • エネルギー(その他)
  • 制御と最適化
  • 電子工学および電気工学


「Crude oil spot price forecasting based on multiple crude oil markets and timeframes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。