## 抄録

We show that there are generalized complex structures on all 4-manifolds obtained by logarithmic transformations with arbitrary multiplicity along symplectic tori with trivial normal bundle. Applying a technique of broken Lefschetz fibrations, we obtain generalized complex structures with arbitrary large numbers of connected components of type changing loci on every manifold which is obtained from a symplectic 4-manifold by a logarithmic transformation of multiplicity 0 along a symplectic torus with trivial normal bundle. Elliptic surfaces with non-zero euler characteristic and the connected sums (Formula Presented) and S1 × S3 admit twisted generalized complex structures Jn with n type changing loci for arbitrary large n.

本文言語 | English |
---|---|

ページ（範囲） | 341-357 |

ページ数 | 17 |

ジャーナル | Journal of Symplectic Geometry |

巻 | 14 |

号 | 2 |

出版ステータス | Published - 2016 |

## ASJC Scopus subject areas

- 幾何学とトポロジー

## フィンガープリント

「C^{∞}-logarithmic transformations and generalized complex structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。