C-logarithmic transformations and generalized complex structures

Ryushi Goto, Kenta Hayano

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We show that there are generalized complex structures on all 4-manifolds obtained by logarithmic transformations with arbitrary multiplicity along symplectic tori with trivial normal bundle. Applying a technique of broken Lefschetz fibrations, we obtain generalized complex structures with arbitrary large numbers of connected components of type changing loci on every manifold which is obtained from a symplectic 4-manifold by a logarithmic transformation of multiplicity 0 along a symplectic torus with trivial normal bundle. Elliptic surfaces with non-zero euler characteristic and the connected sums (Formula Presented) and S1 × S3 admit twisted generalized complex structures Jn with n type changing loci for arbitrary large n.

本文言語English
ページ(範囲)341-357
ページ数17
ジャーナルJournal of Symplectic Geometry
14
2
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「C<sup>∞</sup>-logarithmic transformations and generalized complex structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル