### 抜粋

In this note, it is shown that the stochastic Airy operator, which is the "Schrödinger operator" on the half-line whose potential term consists of Gaussian white noise plus a linear term tending to †∞, can naturally be defined as a generalized Sturm-Liouville operator and that it is self-adjoint and has purely discrete spectrum with probability one. Thus "stochastic Airy spectrum" of Ramírez, Rider and Virág is the spectrum of an operator in the ordinary sense of the word.

元の言語 | English |
---|---|

ページ（範囲） | 695-711 |

ページ数 | 17 |

ジャーナル | Markov Processes and Related Fields |

巻 | 21 |

発行部数 | 3P |

出版物ステータス | Published - 2015 |

### ASJC Scopus subject areas

- Applied Mathematics
- Statistics and Probability

## フィンガープリント Definition and self-adjointness of the stochastic airy operator' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Minami, N. (2015). Definition and self-adjointness of the stochastic airy operator.

*Markov Processes and Related Fields*,*21*(3P), 695-711.