Deposition and Dissolution of Lithium in 1-Methyl-1-methoxyethylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolyte with Different Compositions

Ryota Furuya, Tomitaro Hara, Takao Fukunaga, Kiyomoto Kawakami, Nobuyuki Serizawa, Yasushi Katayama

研究成果: Article査読

抄録

The solid electrolyte interphase (SEI) between Li and ionic liquid electrolytes was investigated in 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)amide (MPPFSA) and 1-methyl-1-methoxyethylpyrrolidinium bis(fluorosulfonyl)amide (MOEMPFSA) with different LiFSA concentrations. The physicochemical properties and the coordination states of Li+ with FSA- with increasing the LiFSA concentration were similar between xLiFSA-MPPFSA and MOEMPFSA. On the other hand, the SEI resistance obtained by electrochemical impedance spectroscopy using a Li|Li symmetrical cell increased with the lapse of time in xLiFSA-MPPFSA more significantly than in xLiFSA-MOEMPFSA, suggesting that the SEI formed in xLiFSA-MOEMPFSA was more conductive than that in xLiFSA-MPPFSA. The SEI formed on Li was considered to be composed mainly of the ions in the electrolytes and their decomposed products by X-ray photoelectron spectroscopy. The cyclability of deposition and dissolution of Li was improved with increasing the LiFSA concentration in both xLiFSA-MPPFSA and MOEMPFSA. An increase in the conductivity of the SEI with increasing the LiFSA concentration may lead to the promotion of homogeneous growth of Li rather than dendritic growth of Li.

本文言語English
論文番号100516
ジャーナルJournal of the Electrochemical Society
168
10
DOI
出版ステータスPublished - 2021 10月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 再生可能エネルギー、持続可能性、環境
  • 表面、皮膜および薄膜
  • 電気化学
  • 材料化学

フィンガープリント

「Deposition and Dissolution of Lithium in 1-Methyl-1-methoxyethylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolyte with Different Compositions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル