Detecting method of music to match the user's mood in prefrontal cortex EEG activity using the GA

Shin Ichi Ito, Yasue Mitsukura, Minoru Fukumi, Jianting Cao

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

In this paper, we propose a method for detecting the mood much music for prefrontal cortex electroencephalogram (EEG) activity. The analyzed EEG frequencies contain significant and immaterial information components. We focused on the combinations of the significant frequency. These frequency combinations are thought to express personal features of EEG activity. In the proposed method, we calculate the spectrum of these frequency combinations rates that does not include the noise frequency components and evaluates whether the music matches the user's mood through a simple threshold processing. Then, a genetic algorithm (GA) is used to specify the frequency of personal features on the EEG. The threshold vale used the threshold processing is the average value of the spectrum rates specified EEG frequency combinations. Finally, the performance of the proposed method is evaluated using real EEG data.

本文言語English
ホスト出版物のタイトルICCAS 2007 - International Conference on Control, Automation and Systems
ページ2142-2145
ページ数4
DOI
出版ステータスPublished - 2007 12月 1
外部発表はい
イベントInternational Conference on Control, Automation and Systems, ICCAS 2007 - Seoul, Korea, Republic of
継続期間: 2007 10月 172007 10月 20

出版物シリーズ

名前ICCAS 2007 - International Conference on Control, Automation and Systems

Other

OtherInternational Conference on Control, Automation and Systems, ICCAS 2007
国/地域Korea, Republic of
CitySeoul
Period07/10/1707/10/20

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Detecting method of music to match the user's mood in prefrontal cortex EEG activity using the GA」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル