Direct G-code manipulation for 3D material weaving

S. Koda, H. Tanaka

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

The process of conventional 3D printing begins by first build a 3D model, then convert to the model to G-code via a slicer software, feed the G-code to the printer, and finally start the printing. The most simple and popular 3D printing technique is Fused Deposition Modeling. However, in this method, the printing path that the printer head can take is restricted by the G-code. Therefore the printed 3D models with complex pattern have structural errors like holes or gaps between the printed material lines. In addition, the structural density and the material's position of the printed model are difficult to control. We realized the G-code editing, Fabrix, for making a more precise and functional printed model with both single and multiple material. The models with different stiffness are fabricated by the controlling the printing density of the filament materials with our method. In addition, the multi-material 3D printing has a possibility to expand the physical properties by the material combination and its G-code editing. These results show the new printing method to provide more creative and functional 3D printing techniques.

本文言語English
ホスト出版物のタイトルNanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017
編集者Vijay K. Varadan
出版社SPIE
ISBN(電子版)9781510608191
DOI
出版ステータスPublished - 2017 1月 1
イベントNanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017 - Portland, United States
継続期間: 2017 3月 262017 3月 29

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
10167
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

Other

OtherNanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017
国/地域United States
CityPortland
Period17/3/2617/3/29

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Direct G-code manipulation for 3D material weaving」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル