Discrete Crum’s Theorems and Lattice KdV-Type Equations

Cheng Zhang, Linyu Peng, Da jun Zhang

研究成果: Article査読

抄録

We develop Darboux transformations (DTs) and their associated Crum’s formulas for two Schrödinger-type difference equations that are themselves discretized versions of the spectral problems of the KdV and modified KdV equations. With DTs viewed as a discretization process, classes of semidiscrete and fully discrete KdV-type systems, including the lattice versions of the potential KdV, potential modified KdV, and Schwarzian KdV equations, arise as the consistency condition for the differential/difference spectral problems and their DTs. The integrability of the underlying lattice models, such as Lax pairs, multidimensional consistency, τ-functions, and soliton solutions, can be easily obtained by directly applying the discrete Crum’s formulas.

本文言語English
ページ(範囲)165-182
ページ数18
ジャーナルTheoretical and Mathematical Physics(Russian Federation)
202
2
DOI
出版ステータスPublished - 2020 2月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Discrete Crum’s Theorems and Lattice KdV-Type Equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル