Distance Matching Extension in Cubic Bipartite Graphs

R. E.L. Aldred, Jun Fujisawa, Akira Saito

研究成果: Article査読

抄録

A graph G is said to be distanced matchable if, for any matching M of G in which edges are pairwise at least distance d apart, there exists a perfect matching M of G which contains M. In this paper, we prove the following results: (i) if G is a cubic bipartite graph in which, for each e∈ E(G) , there exist two cycles C1, C2 of length at most d such that E(C1) ∩ E(C2) = { e} , then G is distance d- 1 matchable, and (ii) if G is a planar or projective planar cubic bipartite graph in which, for each e∈ E(G) , there exist two cycles C1, C2 of length at most 6 such that e∈ E(C1) ∩ E(C2) , then G is distance 6 matchable.

本文言語English
ジャーナルGraphs and Combinatorics
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント 「Distance Matching Extension in Cubic Bipartite Graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル