Distance-restricted matching extension in triangulations of the torus and the Klein bottle

R. E.L. Aldred, Jun Fujisawa

研究成果: Article査読

5 被引用数 (Scopus)

抄録

A graph G with at least 2m + 2 edges is said to be distance d m-extendable if for any matching M in G with m edges in which the edges lie pair-wise distance at least d, there exists a perfect matching in G containing M. In a previous paper, Aldred and Plummer proved that every 5-connected triangulation of the plane or the projective plane of even order is distance 5 m-extendable for any m. In this paper we prove that the same conclusion holds for every triangulation of the torus or the Klein bottle.

本文言語English
ジャーナルElectronic Journal of Combinatorics
21
3
DOI
出版ステータスPublished - 2014 9 18

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー
  • 離散数学と組合せ数学
  • 計算理論と計算数学
  • 応用数学

フィンガープリント

「Distance-restricted matching extension in triangulations of the torus and the Klein bottle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル