Doubly robust-type estimation of population moments and parameters in biased sampling

Yuya Shimizu, Takahiro Hoshino

研究成果: Article査読

抄録

We propose an estimation method of population moments or parameters in “biased sampling data” in which for some units of data, not only the variables of interest but also the covariates have missing observations, and the proportion of “missingness” is unknown. We use auxiliary information such as the distribution of covariates or their moments in random sampling data in order to correct the bias. Moreover, with additional assumptions, we can correct the bias even if we have only the moment information of covariates. The main contribution of this paper is the development of a doubly robust-type estimator for biased sampling data. This method provides a consistent estimator if either the regression function or the assignment mechanism is correctly specified. We prove the consistency and semi-parametric efficiency of the doubly robust estimator. Both the simulation and empirical application results demonstrate that the proposed estimation method is more robust than existing methods.

本文言語English
論文番号e241
ジャーナルStat
8
1
DOI
出版ステータスPublished - 2019 1

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Doubly robust-type estimation of population moments and parameters in biased sampling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル