Drift ice recognition using remote sensing data by neural networks

T. Nagao, Yasue Mitsukura, M. Fukumi, N. Akamatsu

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

In recent years, observation of a wide variety in the Earth's surface can be done by improvement of remote sensing technology. The purpose of the paper is to recognize a drift ice as thick ice, thin ice, and sea using synthetic aperture radar (SAR) images. The recognition of the drift ice is achieved by using neural networks (NN). The neural network applies two methods, a BP trained neural network and a self-organizing map. Training data are image features extracted from SAR images. There are three methods for extracting the features: Fourier transform, high-order autocorrelation function (HACF), and image features based on a run length method. We carry out a comparative experiment, and demonstrate their effectiveness by means of computer simulation.

本文言語English
ホスト出版物のタイトルICONIP 2002 - Proceedings of the 9th International Conference on Neural Information Processing: Computational Intelligence for the E-Age
出版社Institute of Electrical and Electronics Engineers Inc.
ページ645-649
ページ数5
2
ISBN(印刷版)9810475241, 9789810475246
DOI
出版ステータスPublished - 2002
外部発表はい
イベント9th International Conference on Neural Information Processing, ICONIP 2002 - Singapore, Singapore
継続期間: 2002 11月 182002 11月 22

Other

Other9th International Conference on Neural Information Processing, ICONIP 2002
国/地域Singapore
CitySingapore
Period02/11/1802/11/22

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「Drift ice recognition using remote sensing data by neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル