TY - JOUR
T1 - Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDR1-bicistronic retrovirus vector Ha-MDR-IRES-gp91
AU - Sugimoto, Yoshikazu
AU - Tsukahara, Satomi
AU - Sato, Shigeo
AU - Suzuki, Mutsumi
AU - Nunoi, Hiroyuki
AU - Malech, Harry L.
AU - Gottesman, Michael M.
AU - Tsuruo, Takashi
PY - 2003/5
Y1 - 2003/5
N2 - Background: Retroviral transduction of human hematopoietic stem cells is an attractive strategy in gene therapy; however, transduction efficiency and duration of transgene expression may not be satisfactory in current protocols. Co-expression of a human multidrug resistance gene (MDR1) with a therapeutic gene affords selectable growth advantage to genetically modified cells. Methods: A bicistronic retrovirus vector, Ha-MDR-IRES-gp91, was constructed for the co-expression of MDR1 and gp91, a gene responsible for X-linked chronic granulomatous disease (X-CGD). Drug-selected co-expression of P-glycoprotein and gp91 was evaluated in transduced cells. Results: Epstein-Barr virus-transformed B cells from X-CGD patients transduced with Ha-MDR-IRES-gp91 co-expressed human P-glycoprotein and gp91, and acquired superoxide-generating activity. Human CD34-positive cells from an X-CGD patient were transduced with Ha-MDR-IRES-gp91 and subsequently treated with 2 ng/ml vincristine. After 13 days, 20% of Ha-MDR-IRES-gp91-transduced cells were P-glycoprotein- and gp91-positive by FACS analysis. The superoxide-generating activity of the transduced population was 27% of that of normal cells. Mice transplanted with Ha-MDR-IRES-gp91-transduced bone marrow cells showed co-expression of P-glycoprotein and gp91 in peripheral blood mononuclear cells. By administering paclitaxel, the proportions of P-glycoprotein- and gp91-positive cells were increased in all the four mice examined. When mice transplanted with Ha-MDR-IRES-gp91-transduced cells were repeatedly administered paclitaxel, the ratios of P-glycoprotein- and gp91-positive cells were maintained for over 1 year. Conclusions: These results suggest that MDR1-bicistronic vectors may be useful to select the transduced hematopoietic cells in vivo. This may lead to the sustained expression of transgenes in the blood cells of patients treated with stem cell gene therapy.
AB - Background: Retroviral transduction of human hematopoietic stem cells is an attractive strategy in gene therapy; however, transduction efficiency and duration of transgene expression may not be satisfactory in current protocols. Co-expression of a human multidrug resistance gene (MDR1) with a therapeutic gene affords selectable growth advantage to genetically modified cells. Methods: A bicistronic retrovirus vector, Ha-MDR-IRES-gp91, was constructed for the co-expression of MDR1 and gp91, a gene responsible for X-linked chronic granulomatous disease (X-CGD). Drug-selected co-expression of P-glycoprotein and gp91 was evaluated in transduced cells. Results: Epstein-Barr virus-transformed B cells from X-CGD patients transduced with Ha-MDR-IRES-gp91 co-expressed human P-glycoprotein and gp91, and acquired superoxide-generating activity. Human CD34-positive cells from an X-CGD patient were transduced with Ha-MDR-IRES-gp91 and subsequently treated with 2 ng/ml vincristine. After 13 days, 20% of Ha-MDR-IRES-gp91-transduced cells were P-glycoprotein- and gp91-positive by FACS analysis. The superoxide-generating activity of the transduced population was 27% of that of normal cells. Mice transplanted with Ha-MDR-IRES-gp91-transduced bone marrow cells showed co-expression of P-glycoprotein and gp91 in peripheral blood mononuclear cells. By administering paclitaxel, the proportions of P-glycoprotein- and gp91-positive cells were increased in all the four mice examined. When mice transplanted with Ha-MDR-IRES-gp91-transduced cells were repeatedly administered paclitaxel, the ratios of P-glycoprotein- and gp91-positive cells were maintained for over 1 year. Conclusions: These results suggest that MDR1-bicistronic vectors may be useful to select the transduced hematopoietic cells in vivo. This may lead to the sustained expression of transgenes in the blood cells of patients treated with stem cell gene therapy.
KW - Bicistronic retrovirus vector
KW - Chronic granulomatous disease
KW - Drug resistance
KW - Gene therapy
KW - Hematopoietic stem cell
KW - P-glycoprotein
UR - http://www.scopus.com/inward/record.url?scp=1542466885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542466885&partnerID=8YFLogxK
U2 - 10.1002/jgm.362
DO - 10.1002/jgm.362
M3 - Article
C2 - 12731085
AN - SCOPUS:1542466885
VL - 5
SP - 366
EP - 376
JO - Journal of Gene Medicine
JF - Journal of Gene Medicine
SN - 1099-498X
IS - 5
ER -