Dynamical correlations among vicious random walkers

Taro Nagao, Makoto Katori, Hideki Tanemura

研究成果: Article査読

25 被引用数 (Scopus)

抄録

Nonintersecting motion of Brownian particles in one dimension is studied. The system is constructed as the diffusion scaling limit of Fisher's vicious random walk. N particles start from the origin at time t = 0 and then undergo mutually avoiding Brownian motion until a finite time t = T. In the short time limit t ≪ T, the particle distribution is asymptotically described by Gaussian Unitary Ensemble (GUE) of random matrices. At the end time t = T, it is identical to that of Gaussian Orthogonal Ensemble (GOE). We show that the most general dynamical correlations among arbitrary number of particles at arbitrary number of times are written in the forms of quaternion determinants. Asymptotic forms of the correlations in the limit N → ∞ are evaluated and a discontinuous transition of the universality class from GUE to GOE is observed.

本文言語English
ページ(範囲)29-35
ページ数7
ジャーナルPhysics Letters, Section A: General, Atomic and Solid State Physics
307
1
DOI
出版ステータスPublished - 2003 1月 20
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Dynamical correlations among vicious random walkers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル